Αν είχατε δυο σώματα,θα τα καταφέρνατε με μια μόνο ζύγιση. Για τρία σώματα χρειάζονται τρεις ζυγίσεις. Η πρώτη θα δείχνει ποιο από τα σώματα Α και Β είναι βαρύτερο, εάν είναι το Α,η δεύτερη ζύγιση σας δείχνει ποιο από τα A και Γ είναι βαρύτερο.Εάν το Α είναι βαρύτερο από το Γ, είναι απαραίτητη και τρίτη ζύγιση για την σύγκριση των Β και Γ.
Για τέσσερα σώματα, το πρόβλημα παραμένει απλό, χρειάζονται 5 ζυγίσεις.
Από 5 σώματα και πάνω το πράγμα αρχίζει και ζορίζει.
Τα 5 σώματα μπορεί να διαταχθούν κατά αυξανόμενο βάρος με επτά ζυγίσεις το πολύ:
1η ζύγιση : Συγκρίνουμε το Α με το Β και υποθέτουμε ότι το Β είναι πιο βαρύ. ( Α<Β)
2η ζύγιση: Συγκρίνουμε το Γ με το Δ και υποθέτουμε ότι το Δ είναι βαρύτερο (Γ<Δ)
3η ζύγιση: Συγκρίνουμε το Β με το Δ έστω ότι το Δ είναι βαρύτερο ( Β<Δ)
4η ζύγιση: Συγκρίνουμε το Β με το Ε .
5η ζύγιση: Εάν το Ε είναι πιο βαρύ από το Β, συγκρίνουμε το Ε με το Δ. Εάν αντίθετα είναι ελαφρύτερο από το Β, τότε το συγκρίνουμε με το Α.
Η πέμπτη ζύγιση μας επιτρέπει να κατατάξουμε τα τέσσερα αντικείμενα Α,Β,Ε,Δ κατά αύξουσα σειρά. Γνωρίζουμε όμως από την δεύτερη ζύγιση ότι το Γ είναι πιο ελαφρύ από το Δ. Ας υποθέσουμε ότι το αποτέλεσμα της πέμπτης ζύγισης είναι: Δ>Β>Ε>Α. Απομένει η κατάταξη του Γ σε σχέση με τα Β,Ε και Α, πράγμα που θα επιτύχουμε με δυο ακόμα ζυγίσεις.
6η ζύγιση:Συγκρίνουμε το Γ με το Ε.
7η ζύγιση:Αν το Γ είναι πιο βαρύ από το Ε, συγκρίνουμε το Γ με το Β. Εάν το Γ είναι ελαφρύτερο από το Ε, το συγκρίνουμε με το Α.
Ο Hugo Steinhaus επανεξέτασε το πρόβλημα,το 1968,και δίνει ένα πινάκα στον οποίο αποφαίνεται για τον ελάχιστο αριθμό ζυγίσεων που απαιτούνται για την διάταξη ν αντικείμενων όπου ν=1,….,11 (εικόνα)
Το παραπάνω πρόβλημα είναι ισοδύναμο με το να μας ζητηθεί για ν αριθμό παικτών στο τένις να βρούμε τον ελάχιστο αριθμό παιχνιδιών που πρέπει να δώσουν για να έχουμε την τελική κατάταξη.
Για τέσσερα σώματα, το πρόβλημα παραμένει απλό, χρειάζονται 5 ζυγίσεις.
Από 5 σώματα και πάνω το πράγμα αρχίζει και ζορίζει.
Τα 5 σώματα μπορεί να διαταχθούν κατά αυξανόμενο βάρος με επτά ζυγίσεις το πολύ:
1η ζύγιση : Συγκρίνουμε το Α με το Β και υποθέτουμε ότι το Β είναι πιο βαρύ. ( Α<Β)
2η ζύγιση: Συγκρίνουμε το Γ με το Δ και υποθέτουμε ότι το Δ είναι βαρύτερο (Γ<Δ)
3η ζύγιση: Συγκρίνουμε το Β με το Δ έστω ότι το Δ είναι βαρύτερο ( Β<Δ)
4η ζύγιση: Συγκρίνουμε το Β με το Ε .
5η ζύγιση: Εάν το Ε είναι πιο βαρύ από το Β, συγκρίνουμε το Ε με το Δ. Εάν αντίθετα είναι ελαφρύτερο από το Β, τότε το συγκρίνουμε με το Α.
Η πέμπτη ζύγιση μας επιτρέπει να κατατάξουμε τα τέσσερα αντικείμενα Α,Β,Ε,Δ κατά αύξουσα σειρά. Γνωρίζουμε όμως από την δεύτερη ζύγιση ότι το Γ είναι πιο ελαφρύ από το Δ. Ας υποθέσουμε ότι το αποτέλεσμα της πέμπτης ζύγισης είναι: Δ>Β>Ε>Α. Απομένει η κατάταξη του Γ σε σχέση με τα Β,Ε και Α, πράγμα που θα επιτύχουμε με δυο ακόμα ζυγίσεις.
6η ζύγιση:Συγκρίνουμε το Γ με το Ε.
7η ζύγιση:Αν το Γ είναι πιο βαρύ από το Ε, συγκρίνουμε το Γ με το Β. Εάν το Γ είναι ελαφρύτερο από το Ε, το συγκρίνουμε με το Α.
Ο Hugo Steinhaus επανεξέτασε το πρόβλημα,το 1968,και δίνει ένα πινάκα στον οποίο αποφαίνεται για τον ελάχιστο αριθμό ζυγίσεων που απαιτούνται για την διάταξη ν αντικείμενων όπου ν=1,….,11 (εικόνα)
Το παραπάνω πρόβλημα είναι ισοδύναμο με το να μας ζητηθεί για ν αριθμό παικτών στο τένις να βρούμε τον ελάχιστο αριθμό παιχνιδιών που πρέπει να δώσουν για να έχουμε την τελική κατάταξη.