Σάββατο, 13 Ιανουαρίου 2018

Μία γραφή των πρώτων αριθμών

Κάθε πρώτος αριθμός $p$ γράφεται στη μορφή: $p\cong 1(mod6)$ ή $p \cong 5(mod6)$.

Δηλαδή, στη διαίρεσή του με το $6$ ένας πρώτος θα αφήνει υπόλοιπο 1 ή 5.

Πράγματι, θεωρούμε ότι $p$ είναι πρώτος και διαιρούμε με το $6$.
Έχουμε $p = 6k + y$ με το υπόλοιπο $y =0,1,2,3,4,5$.
 Και έχουμε σε κάθε περίπτωση:
Αν $y=0$ τότε $p = 6k$ που δεν είναι πρώτος.
Αν $y=1$ τότε $p = 6k+1$ που ΜΠΟΡΕΙ να είναι πρώτος.
Αν $y=2$ τότε $p = 6k+2$ που δεν είναι πρώτος.
Αν $y=3$ τότε $p = 6k+3$ που δεν είναι πρώτος.
 Αν $y=4$ τότε $p = 6k+4$ που δεν είναι πρώτος.
Αν $y=5$ τότε $p = 6k+5$ που ΜΠΟΡΕΙ να είναι πρώτος.

Για τις δύο περιπτώσεις γράφουμε ότι ΜΠΟΡΕΙ να είναι πρώτος, διότι μπορεί και να μην είναι.
Για παράδειγμα: $p = 6k +1$ για $k=3, p =19$ πρώτος, αλλά για $k=4, p= 25 $ σύνθετος !
Έτσι, οι δύο παραπάνω μορφές περιέχουν όλους τους πρώτους, αλλά και πολλούς σύνθετους αριθμούς.

Πάντως είναι βέβαιο ότι αν είναι πρώτος τότε σίγουρα δεν μπορεί να έχει υπόλοιπο $0,2,3,4$.

Διαιρείται με το 7;

Να αποδειχθεί ότι αν ο αριθμός $n$ δεν είναι πολλαπλάσιο του $3$, τότε ο αριθμός $2^{2n} +2^n + 1$ είναι πολλαπλάσιο του $7$.

Θα εργαστούμε με βάση τα υπόλοιπα του $n mod(3)$.
Έστω $n=3m +1$, τότε έχουμε:
$2^{2n} = 2^{6m+2} = 2^2 \cdot (2^3)^{2m} \cong 4 \cdot 1 (mod7)$
Ακόμα:
$2^n = 2^{3m +1} = 2 \cdot 2^{3m} = 2 \cdot (2^3)^m \cong 2 \cdot 1(mod7)$
Συνεπώς: $2^{2n} + 2^n + 1 \cong (4 +2 +1)(mod7) \cong 0(mod7).$
το οποίο είναι το ζητούμενο.
Ομοίως συμβαίνει και για την περίπτωση $n=3m +2$.

Κυριακή, 7 Ιανουαρίου 2018

Ανεξαρτήτως συστήματος αρίθμησης

Να αποδειχθεί ότι σε οποιοδήποτε σύστημα αρίθμησης με βάση $a \geq 2$ οι αριθμοί:
$10101, 101010101, 10101010101010101, ...$ είναι σύνθετοι.

Υπενθυμίζεται ότι στα συστήματα αρίθμησης θέσης, με βάση $a$ ισχύει ότι:
$a_n a_{n-1}a_{n-2}\ldots a_2 a_1 = a_1 + a_2 \cdot a + a_3 \cdot a^2 + \cdots + a_n \cdot a^n$

Οπότε αντίστοιχα θα έχουμε:

$10101 = 1 \cdot a^0 + 0 \cdot a + 1 \cdot a^2 + 0 \cdot a^3 + 1\cdot a^4$

$101010101 = 1 \cdot a^0 + 0 \cdot a + 1 \cdot a^2 + 0 \cdot a^3 + 1\cdot a^4 + 0 \cdot a^5 + 1 \cdot a^6 + 0 \cdot a^7 + 1 \cdot a^8$

 Και γενικά καθένας από τους αριθμούς αυτούς θα γράφεται:

$m_n = 1 + a^2 + a^4 + a^6 + a^8 + \cdots + a^{4n} $

που αποτελεί άθροισμα όρων γεωμετρικής προόδου:

$m_n = \frac{a^{4n +2} -1 }{a^2 -1} =\frac{a^{2n+1} -1}{a-1}\cdot \frac{a^{2n+1}+1}{a+1} =$

$= \left( a^{2n} + a^{2n-1} + \cdots +a^2 + a +1\right) \left( a^{2n} - a^{2n-1} + a^{2n-2} -\cdots +1 \right)$

Οπότε πράγματι ο $m_n$ είναι σύνθετος, αφού εύκολα ελέγχεται ότι ο αριστερός διαιρέτης είναι μεγαλύτερος της μονάδας και μικρότερός του.

Δευτέρα, 27 Νοεμβρίου 2017

Στριμμενα ρολογια - mathematica.gr

(22) Στριμμενα ρολογια - mathematica.gr



Στριμμενα ρολογια





  • #1

    Με αφορμη το χθεσινο προβλημα του σπασμενου ρολογιου,
    ιδου ενα δικο μου (?) που παει δεκα χρονια πισω, οταν το χρησιμοποιησα
    για εισαγωγη στην στροφη (στο επι της συμμετριας βιβλιο μου, ISOMETRICA (1.3.1)):



    Στρεφουμε ενα ρολογι που δειχνει 9:40 κατα 130 μοιρες και κατα την φορα
    των δεικτων του -- να δειχθει οτι η ωρα που δειχνει υστερα απο αυτην την
    στροφη ειναι 2:01:49.